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Abstract—Visual dialogue systems need to understand dynamic
visual scenes and comprehend semantics in order to converse with
users. Constructing video dialogue systems is more challenging
than traditional image dialogue systems because the large feature
space of videos makes it difficult to capture semantic information.
Furthermore, the dialogue system also needs to precisely answer
users’ question based on comprehensive understanding of the
videos and the previous dialogue. In order to improve the
performance of video dialogue system, we proposed an end-to-end
recurrent cross-modality attention (ReCMA) model to answer a
series of questions about a video from both visual and textual
modality. The answer representation of the question is updated
based on both visual representation and textual representation in
each step of the reasoning process to have a better understanding
of both modalities’ information. We evaluate our method on the
challenging DSTC7 video scene-aware dialog dataset and the
proposed ReCMA achieves a relative 20.8% improvement over
the baseline on CIDEr.

I. INTRODUCTION

DEEP neural networks have been successfully understand
both visual information and natural language, with ap-

plications ranging from image captioning [9], [20], [23],
[39], [43], [50], [68], [69] to image-based visual question
answering (VQA) [4], [14], [24], [41], [46], [72], [75],
[81]. Different from image-based VQA, which the model
can generate an answer of a single question about a static
image, image-based visual dialogue [11], [17], [28], [38],
[47], [58], [64] was introduced to hold a meaningful dialogue
with humans about an image using conversational language.
However, intelligent systems are difficult to well interact with
human users when only accessing a single image without
dynamic scenes. Therefore, the ability to reason on a video
is important and deserves to be discussed.

Moving from a single image to video is challenging for
vision-to-language systems because systems need to under-
stand dynamic visual scenes, natural language, and multiple
modalities interaction. To grasp the semantics of dynamic
scenes, recent research has focused on video captioning [19],
[27], [36], [52], [54] and video question answering [32], [65],
[77], [82], [83]. Instead of answering single question of a
video, video dialogue system [1], [16], [56] is designed to
understand dialogue context and answer series of question
of a given video. Developing video dialogue systems is
more challenging than constructing traditional image-language
systems because feature space of video is more complicated
than image-based features. To be more specific, videos contain
diverse objects, flow of actions, and dynamic light source,

Fig. 1. A sample of caption, summary, and question-answer pairs for a given
video from the DSTC7 dataset. i-th turn question and answer are denoted as
Qi and Ai respectively.

yielding video processing more difficult than image process-
ing. Moreover, instead of answering one question or selecting
an answer from multiple choices, generating an open-end
answer from a series of question-answer pairs causes video
dialogue system more complex than video question answering.
Figure 1 shows an example of dialogue corresponds to a video
from the Dialog System Technology Challenge 7 (DSTC7)
dataset [16].

End-to-end vision-to-language systems have been growing
awareness because they can be trained by paired input and
output texts, without pre-designed data processing modules.
The development cost of systems can also be reduced by end-
to-end training procedure, and this approach shows improve-
ment when utilizing large conversational datasets [37], [67].
Recently, attention mechanisms [5], [74] have shown benefits
on several end-to-end vision-to-language systems. Attention
mechanisms can capture relevant region on both visual feature
and textual feature that correspond to the query. However,
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Fig. 2. Overview of our end-to-end video dialogue system. The system first produces representations of each data. The proposed recurrent cross-modality
attention then learns the important regions from both visual and textual domain. Finally, the system outputs the answer corresponds to the input question by
answer generation module. The detailed descriptions are introduced in Section III.

the performance of attention-based vision-to-language systems
often declines when the answer lies in a specific region of
image or video with plenty of objects or dynamic back-
ground. Some may hypothesize the limited performance of the
attention-based vision-to-language systems for the deficient
ability of single-step reasoning [13]. Moreover, attention-based
vision-to-language systems rarely consider information from
different modalities (e.g., attending visual modality with query
without the information of textual modality), yielding weak
understanding when the number of feature type increases.
Motivated by the weakness of current attention-based vision-
to-language systems, we propose Recurrent Cross-Modality
Attention (ReCMA) that utilizes multi-step reasoning and
jointly learns attention from multiple modalities in order to
have a better understanding of video dialogue.

Figure 2 shows an overview of the proposed ReCMA
framework. First, the system encodes both the visual features
and the textual features. The visual features are extracted by
Two-Stream Inflated 3D ConvNets (I3D) [7], which capture
RGB pixel information and spatial flow information from the
input video. The video summary, video caption, question,
and dialogue history are fed into corresponding LSTM-based
encoder to build up textual features. Recurrent Cross-Modality
Attention (ReCMA) then attend question with both visual
features and textual features to gather question-aware vi-
sual representation and question-aware textual representation.
Moreover, with the increasing reasoning steps of ReCMA, the
model learns the important visual regions and salient textual
parts that correspond to the query. When attending one domain
feature, the proposed model also attends the heterogeneous
domain feature to have full comprehension of the video.
Jointly considering both visual and textual representation,
a LSTM-based answer-generation decoder then generate an

open-end answer that most relevant to the given question,
video, and context.

In summary, this work includes two contributions: (1) We
introduced an end-to-end model to understand dynamic scenes
and conversational dialogue, instead of answering a single
question about a static image. (2) We proposed a ReCMA
framework that performing multiple reasoning steps to get fo-
cused features’ representation and developing cross-modality
attention to comprehend different modalities’ information. Our
proposed model enhance 20.8% of CIDEr on the DSTC7
dataset.

II. RELATED WORK

A significant amount of research has been developed to
enhance the performance of vision-to-language systems, and
these systems can be classified as visual captioning, visual
question answering, and visual dialogue. In the following
section, we briefly review those related work.

A. Visual Captioning

Image captioning intends to describe the content of an
image, and most of the work [3], [8], [9], [12], [20], [22], [43],
[69], [79] majorly adopt recurrent neural networks (RNNs)
as the core architecture for generating captions and learning
long-term visual concepts. RNNs show exceptional results
on learning the matching between image patches and single
text. Xu et al. [74] proposed a soft attention mechanism [10]
on the input image to capture salient regions and improved
the performance of image captioning. Implementing attention
mechanism also shows promising outcome on much research
work [2], [23], [39], [50], [68].

Generating natural language description from images to
videos is more challenging because of videos’ larger feature



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

space. Some research [27], [54] comprehends human activities
in the video in order to benefit vision-language systems and
some work [19], [49], [52], [59], [60] also utilize RNNs to
increase long-term memory of the model. Instead of focusing
on salient regions on frames in the video, some work [36],
[48], [62], [76], [80] also utilizes temporal attention to select
the most relevant temporal segments. To conclude, visual
captioning introduces visual understanding by generating se-
mantics that well fit the visual features.

B. Visual Question Answering

Instead of generating a description of visual scenes, visual
question answering (VQA) uplifts the interaction of vision-
to-language systems and humans. Giving a natural language
question that targets on visual features, the task is to provide
an accurate answer relevant to the question. Visual question
answering requires a more precise understanding of visual fea-
tures and question semantics than producing visual captions.
Because systems need to identify the most relevant region
in the visual features based on question semantics, attention
mechanisms show powerful capability of focusing on the
salient regions. A large amount of image-based VQA research
[2], [15], [24], [40], [41], [55], [57], [70], [73], [75], [81]
conduct systems based on attention mechanism and perform
significant result on plenty of image-based VQA datasets [4],
[14], [42], [53], [84].

In order to enhance the performance of answering a question
for a video, systems need to analyze relevant objects in the
frames and memorize temporal events. Such challenging task
makes much work [25], [32], [45], [77], [83] design more
complicated attention mechanisms to concentrate on the most
important part of videos. Furthermore, some research [18],
[31], [65] provide video datasets from movie or TV series for
systems to output an accurate answer from possible multiple
choice. In sum, visual question answering majorly learns to
focus on the regions of the visual features and takes the
question semantics as guidance.

C. Visual Dialogue

Instead of answering a single question, visual dialogue
increases the ability of human-machine interaction for vision-
to-language systems. Taking historical question-answer pairs
into consideration, models learn both visual representation and
conversational semantics in order to answer a question. Das et
al. [11] first proposed visual dialogue dataset (VisDial) which
contains images from COCO dataset [35] and 1 dialog with 10
question-answer pairs. Most visual dialogue tasks follow the
encoder-decoder framework proposed by Sutskever et al. [64].
Several deep neural network architectures have been developed
from different aspects, including fusing multi-features [17],
generating more human-like responses [71], utilizing ranking
discriminator [38], and using conditional probabilistic auto-
encoders [44]. Attention mechanisms also play a role in image-
based visual dialogue model to capture important regions of
visual feature, including reasoning multiple steps on image
and dialogue [13], performing dynamic attentions combination

[58], recursively increasing visual co-reference resolution [47],
and employing a multi-head attention mechanism [21].

Understanding dynamic scenes and conversational seman-
tics for video-based dialogue systems is more challenging than
image-based dialogue systems, and one basic reason is the
limited availability of such data. Recently, Hori et al. [16]
proposed a visual scene-aware dialog dataset on Dialog System
Technology Challenge 7 (DSTC7). DSTC7 dataset contains
videos from Charades dataset [61] and 1 dialog with 10
question-answer pairs. Different from existing video question
answering datasets that selects an answer from multiple choice,
DSTC7 dataset provides a free-form answer that yields this
task more difficult. Alamri et al. [1] and Schwartz et al. [56]
introduce end-to-end models to propose a simple baseline
for DSTC7 dataset. The spanning feature space across video
frames and historical dialogue make this task important at
dealing with multi-modality. In sum, visual dialogue pro-
vides promising future for vision-to-language systems and
contributes more application in real-world scenarios.

III. RECURRENT CROSS-MODALITY ATTENTION

In this section, we propose the detailed interpretation of
our end-to-end video dialogue system and introduce how the
proposed ReCMA algorithm learns attention from both visual
and textual modality.

A. Data Representation

The inputs of proposed video dialogue system are a video
V , a video caption C, a video summary S, a dialogue history
H , and a question Q. From a raw video V , we extract its
RGB feature FR and spatial flow feature FF as visual features.
The 2048-dimensional FR and FF are extracted from the
”Mixed 5c” layer of Two-Stream Inflated 3D ConvNets (I3D)
[7].

FR, FF = I3D(V ) ∈ Rnv×dv , (1)

where nv is the temporal length of a video and dv is the di-
mension of feature vector. Both visual features are transformed
into new vectors that have the same dimension as the query
vector by the single layer perceptron.

MR = tanh(WRFR) ∈ Rnh×dv , (2)

MF = tanh(WFFF ) ∈ Rnh×dv , (3)

where WR and WF ∈ Rnh×nv are the matrices of neural
weights.

For textual feature of caption C, summary S, dialogue his-
tory H , and question Q, corresponding LSTM-based encoders
are used to obtain the textual representation. To generate
question representation, we find the longest sentence and zero-
pad shorter ones for each batch. Every words are embedded
by using a linear-embedding layer, followed by a single layer
LSTM with dropout. The last hidden state of the LSTM is
the question representation MQ ∈ Rnq×dq , where nq is the
maximal query sentence length for the given batch and dq
is the question embedding dimension. With the same concept
as generating question representation, caption and summary
separately pass through their own LSTM-net to obtain caption
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Fig. 3. The proposed recurrent cross-modality attention for multi-step video
reasoning. The blue arrows indicate passing joint attended visual feature vn to
textual modality. Likewise, the green arrows represent passing joint attended
textual feature tn to visual modality.

representation MC ∈ Rnc×dc and summary representation
MS ∈ Rns×ds . For the given batch, nc and ns represent
the maximal sentence length of caption and summary, and
dc and ds symbolize the dimension of caption and summary.
Dialogue history H consists of l-turns question-answer pairs
(Qi, Ai) (i = 1,2,...l), and a LSTM-net also performed to
obtain dialogue history representation MH ∈ RnH×dH , where
nH and dH indicate the maximum length and the dimension
of the dialogue history snippet.

B. Multi-step ReCMA

The overview of meulti-step recurrent cross-modality atten-
tion mechanism are describe in Figure 3. The framework is
based on recurrent neural network (RNN), where the hidden
state zn indicates the current question representation and the
lower index n is the number of reasoning step. rn and fn
denote as attended RGB feature and attended spatial flow
feature of the video. Likewise, sn and cn represent the attended
summary and the attended caption of the video. Specifically,
we add up rn and fn as joint attended visual feature vn, cn
and sn also aggregate as joint attended textual feature tn. Both
joint attended features vn and tn start after first reasoning step
(n = 1). Different from attending single-domain modality
with query, we found that attending heterogeneous domain
modality enhances the performance of video understanding.
For instance, we take joint attended textual feature tn into
account when attending RGB feature rn with the query. When
the number of reasoning step increases, ReCMA focuses on
the salient region of both visual and textual features by taking
the knowledge from cross-modality.

1) Question Self-Attention: The hidden state of ReCMA
is the current question representation zn ∈ R1×dq , and self-
attention is applied to the question representation.

az = softmax(pz · tanh(Wzz
T
n−1)), (4)

zn = az · zn−1, (5)

where the initial hidden state z0 of RNN is MT
Q . The attention

score of question is az ∈ R1×dq . The matrices of parameter
weight are pz ∈ R1×dq and Wz ∈ Rdq×dq .

2) Attending Question and Previous Joint Attended Textual
Feature to Visual Features: To find the salient regions of
frames in the video, the attended RGB feature rn ∈ R1×dv

and attended spatial flow feature fn ∈ R1×dv are updated by
their previous state ( rn−1 and fn−1) and zn. Furthermore, we
pass the previous joint attended textual feature tn−1 ∈ R1×dv

after the first reasoning step in order to use important textual
information to find valuable visual information.

aα = softmax(pα · tanh(Wααn−1 + W̃zz
T
n +Wtt

T
n−1)), (6)

αn = aα · αn−1, (7)

where α ∈ {r, f} is the index of visual components (RGB
and spatial flow), and the parameter weight matrices are pα ∈
R1×dv , and Wα, W̃z , Wt ∈ Rdv×dv . The attention score of
visual agent is aα ∈ R1×dv . We let the initial visual agent
r0 and f0 be MR and MF . After reasoning step n = 1, the
system starts to aggregate rn and fn as joint attended visual
feature vn, and vn is delivering to the heterogeneous domain
to attend with textual modality.

3) Attending Question and Previous Joint Attended Visual
Feature to Textual Features: To generate the important part
of context, the attended caption cn ∈ R1×dc and the attended
summary sn ∈ R1×ds are updated by attending their previous
form ( cn−1 and sn−1) to zn. The previous joint attended
visual feature vn−1 then transfers into textual modality in
order to utilize salient visual information to discover important
textual information.

aβ = softmax(pβ · tanh(Wββn−1 + Ŵzz
T
n +Wvv

T
n−1)), (8)

βn = aβ · βn−1, (9)

where β ∈ {c, s} is the index of textual components (caption
and summary), and the matrices of parameter weight are pβ ∈
R1×dβ , and Wβ , Ŵz , Wv ∈ Rdβ×dβ . The attention score of
textual agent is aβ ∈ R1×dβ . The initial textual agents c0 and
s0 are set to be MC and MS . Moreover, the system starts to
add up cn and sn as joint attended textual feature tn ∈ R1×dβ

when reasoning step greater than or equal to 1, and tn then
passes to visual modality as an additional information.

C. Answer Generation Decoder

After performing proposed ReCMA, the system concate-
nates all attended features rn, fn, cn, and sn as the context
vector g. In Figure 4, a generative LSTM-based decoder
is used to decode the context vector into an answer y =
(y1, y2, ..., yL), where L is the number of word, and y` ∈ Υ` =
{1, 2, ..., |Υ`|} represents the a vocabulary of possible words
Υ`. An FC-layer with dropout and softmax performed after the
answer generation LSTM-decoder to compute the conditional
probability p(y`|x, y`−1, h`−1) for possible word y`, where
h`−1 denotes the previous hidden state of the decoder, and
context vector g serves as the initial hidden state of the RNN,
i.e. h 0 = g.
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Fig. 4. The answer generation decoder of proposed end-to-end video dialogue
system. The context vector acts as initial state of the LSTM-net. The input is
the concatenation of x and yT−1, where concatenating question representation
with dialogue history representation indicates x, and yT−1 represents the
previous answer word.

Training Validation Test
# of Dialogs 7,659 1,787 1,710
# of Turns 153,180 35,740 13,490
# of Words 1,450,754 339,006 110,252

TABLE I
THE DATA DISTRIBUTION OF DSTC7 DATASET

IV. EXPERIMENTS AND RESULTS

To test the performance of proposed ReCMA, we conduct
several experiments and describe detailed analysis on DSTC7
dataset [16]. From Charades video dataset [61], DSTC7 dataset
proposes video caption, video summary, and 1 dialog with
10 question-answer pairs. The dialogue was generated by two
Amazon Mechanical Turk workers who had a discussion about
events in the video. Table I summarizes the data distribution
of DSTC7 dataset.

A. Baselines for comparison

We first compare our model with AVSD-baseline [1], which
is a naive baseline provided by the organizers. We also
compare our performance with other participants that compete
in this AVSD challenge. Kumar et al. [29] implemented topics
of the dialog into the architecture and performed multimodal
attention. Yeh et al. [78] introduced a fusion technique that
well integrates multimodal features. Le et al. [30] proposed a
hierarchical attention approach and applied a nonlinear feature
fusion technique to combine the visual and audio features. Lin
et al. [34] proposed an entropy-enhanced dynamic memory
network to effectively model video modalities.

B. Experimental setup and evaluation metrics

In the training process, the dimension of textual and visual
feature are set to 128 and 2048. Each text is transferred into a
vector by GloVe [51]. We use the Adam optimizer [26] with a
learning rate 0.001, a batch size of 32, and a drop out rate [63]
0.2. The hyper-parameters were determined by optimizing the
cross-entropy loss between prediction and target. We evaluate
the performance of our model by using 4 automatic evaluation
metrics: BLEU score, METEOR [6], ROUGE-L [33], and
CIDEr [66].

B-1 B-2 B-3 B-4 M R C
reasoning step n = 1

Q+H 0.623 0.478 0.374 0.295 0.220 0.492 0.775
Q+H+C 0.632 0.486 0.381 0.303 0.238 0.518 0.896
Q+H+S 0.628 0.483 0.378 0.302 0.238 0.518 0.889

Q+H+rgb 0.636 0.484 0.390 0.312 0.234 0.517 0.882
Q+H+flow 0.641 0.493 0.392 0.306 0.233 0.520 0.895
Q+H+C+S 0.644 0.488 0.383 0.302 0.238 0.518 0.891

Q+H+rgb+flow 0.648 0.499 0.390 0.309 0.240 0.520 0.890
Q+H+C+S+rgb+flow 0.657 0.510 0.400 0.318 0.238 0.527 0.911

TABLE II
RESULTS FOR EVALUATING THE ROBUSTNESS OF EACH FEATURE USING

OBJECTIVE EVALUATION METRICS. B-i DENOTES AS THE i-GRAM
PRECISION SCORE OF BLEU METRIC. METEOR, ROUGE-L, AND

CIDER STAND FOR M, R, AND C IN THE TABLE

C. Robustness of modalities

To fully analyze the influence of the multi-modal features
to video dialogue task, we start from inputting mono-type
feature then adding other features. We first consider current
question Q and conversational dialogue history H , so the
simplest input representation is concatenating MH with MQ

as the context vector x, without the information of videos.
Both textual feature are encoded using a word embedding and
a single layer LSTM-net. Only taking question and dialogue
history, the model trained by this simplest input is denoted as
Q+H in Table II.

In order to improve video understanding, we then add the
video-related features which are RGB, spatial flow, caption,
and summary of videos as the third input. The models that
individually add video caption, video summary, RGB, and spa-
tial flow are represented as Q+H+C, Q+H+S, Q+H+rgb, and
Q+H+flow respectively in Table II. To test the performance
of each feature, the third feature then pass through ReCMA
with question representation MQ. Attending individual feature
to question representation one time, the reasoning step n of
ReCMA is set to be 1. Therefore, the context vector x of
Q+H+C, Q+H+S, Q+H+rgb, and Q+H+flow is c1, s1, r1, and
f1 respectively.

Because most of the current question Q is asking what
happened in the video and is hard to generate answer from
previous dialogue, all models with video-related features as
the third input reasonably outperform simple model Q+H.
Moreover, we observe that the models with visual features
(Q+H+rgb and Q+H+flow) have better performance than the
models with textual features (Q+H+C and Q+H+S). The
caption and summary for each video in DSTC7 dataset only
have approximate 2 sentences, so visual features are more
informative than textual features when answering a given
question.

After analyzing the models with additional mono-type fea-
ture, we then evaluate the performance of the model combining
different features. With one reasoning step, Q+H+C+S in
the third part of Table II take textual features (caption
and summary) into account. To be more specific, the con-
text vector x of Q+H+C+S is the concatenation of c1 and
s1. Likewise, Q+H+rgb+flow considers visual features (RGB
and optical flow) in first reasoning step, and the context
vector x of this model is the concatenation of r1 and f1.
The results show that the models combining two features



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

(Q+H+C+S and Q+H+rgb+flow) have a better performance
than the models with additional mono-type feature. Exam-
ining textual domain, Q+H+C+S slightly outperforms both
Q+H+C and Q+H+S. Moreover, Q+H+rgb+flow surpasses
both Q+H+rgb and Q+H+flow for visual domain. We observe
that the model combining visual features (Q+H+rgb+flow)
exhibit better performance than the model combining textual
features (Q+H+C+S). Similar to the results of models with
additional mono-type feature, we think that visual features will
help our system to generate better responses.

D. Recurrent reasoning step
In order to fully unitize the information provided by DSTC7

dataset, we select all features to build our proposed end-
to-end model. Furthermore, we aim at measuring the video
understanding performance of proposed ReCMA in different
reasoning step. Including current question Q and dialogue
history H , all video-related features, which are RGB, spatial
flow, caption, and summary of videos, are added. We first
consider attending each feature to question one time, where
reasoning step equals to 1, and the context vector (x is the con-
catenation of c1, s1, r1, and f1. The model that utilize every
feature representations (MR, MF , MC , MS , MQ, and MH ) is
denoted as Q+H+C+S+rgb+flow in Table III. Though without
multiple reasoning steps, the model Q+H+C+S+rgb+flow also
all models in Table II, and this outcome reveals the usefulness
of all features proposed by DSTC7 dataset.

After the first reasoning step (n = 1), proposed ReCMA
targets on more specific regions of textual representation
and visual representation corresponding to the input question.
In order to learn the important regions from heterogeneous
domain, we proposed joint attended features (vn and tn).
Both joint attended features are designed by aggregating
homogeneous attended features after first reasoning step, i.e.,
joint attended visual feature vn equals to attended RGB feature
rn plus attended spatial flow feature fn. However, in order
to test the effectiveness of proposed joint attended features,
we first evaluate ReCMA without them. By eliminating the
term of tTn−1 and vTn−1 in Equation (6) and (8), the model re-
attend attended features to question representation in different
reasoning steps. The result in Table III shows that even
increasing 1 reasoning step (n = 2), ReCMA without joint
attended features improves the performance compared with
Q+H+C+S+rgb+flow model. Furthermore, the performance
further improves along with the reasoning step n increases,
and the outcomes show the success of multiple reasoning steps.
Nevertheless, for reasoning step n greater than 3 , the model
did not show significant increase on every metrics.

Inspired by finding important information of current domain
from the salient regions of a heterogeneous modality, we
add joint attended features (vn and tn) into ReCMA when
reasoning step increases. Take Figure 3 as an example, when
generating r2 and f2, the attention mechanism also takes
joint attended textual feature t1 (combined by c1 and s1) into
account. Likewise, even increasing 1 reasoning step (n = 2),
the performance of ReCMA surpasses Q+H+C+S+rgb+flow
model. Moreover, comparing to ReCMA without joint at-
tended features, ReCMA preforms better when the reasoning

B-1 B-2 B-3 B-4 M R C
ReCMA w/ reasoning step n = 1

Q+H+C+S+rgb+flow 0.657 0.510 0.400 0.318 0.238 0.527 0.911
ReCMA w/o joint attended features (vn and tn)

n = 2 0.657 0.511 0.402 0.323 0.238 0.524 0.917
n = 3 0.660 0.515 0.406 0.324 0.241 0.528 0.93
n = 4 0.656 0.508 0.400 0.318 0.242 0.527 0.922
n = 5 0.662 0.516 0.407 0.324 0.241 0.527 0.911

ReCMA w/ joint attended features (vn and tn)
n = 2 0.658 0.513 0.406 0.325 0.239 0.523 0.917
n = 3 0.663 0.517 0.408 0.327 0.239 0.527 0.917
n = 4 0.662 0.517 0.412 0.333 0.242 0.532 0.935
n = 5 0.667 0.521 0.413 0.334 0.242 0.533 0.941

TABLE III
RESULTS FOR PROPOSED RECMA WITH INCREASING REASONING STEP.
THE BEST RESULT FOR RECMA WITH AND WITHOUT JOINT ATTENDED

FEATURE IN EACH METRIC IS HIGHLIGHTED IN BOLD.

B-1 B-2 B-3 B-4 M R C
AVSD-baseline [1] 0.621 0.480 0.379 0.305 0.217 0.481 0.733
Kumar et al. [29] 0.274 0.175 0.121 0.087 0.117 0.294 0.789

Yeh et al. [78] 0.640 0.513 0.416 0.342 0.223 0.504 0.837
Le et al. [30] 0.633 0.490 0.386 0.310 0.242 0.515 0.856
Lin et al. [34] 0.410 0.493 0.388 0.310 0.241 0.527 0.912
ReCMA(n = 5) 0.667 0.521 0.413 0.334 0.242 0.533 0.941

TABLE IV
THE COMPARISON OF PROPOSED RECMA WITH OTHER

STATE-OF-THE-ART BASELINES.

step n is the same. The result shows that adding impor-
tant information from cross-domain helps the model fully
understand videos and generate accurate answers. Moreover,
ReCMA also shows steady and relative improvement over the
baseline when reasoning step n increases. Unlike ReCMA
without joint attended features, the accuracy of ReCMA still
consistently increases in higher reasoning step (e.g., n exceeds
3). However, after the fifth reasoning step, the model only
achieves slight improvement.

E. Quantitative results with state-of-the-art baselines

Table IV shows the automatic evaluation result of our
proposed method and other state-of-the-art baselines, and our
model improves on most of metrics compared with others.
The result shows the usefulness of proposed ReCMA and
we believe performing attention mechanism on heterogeneous
domain with higher reasoning steps can also benefit other
models.

To show the effectiveness of joint attended features (vn and
tn) in multiple reasoning process, we conduct ablation studies
and the results are shown in Table V. By considering the fifth
reasoning step, the result of taking only one modality feature
(vn or tn) in each reasoning step lie between the result with
and without both features. The results justify our assumption
that using both visual and textual modality in attention mech-
anism would benefit dialogue systems’ performance. In sum,

B-1 B-2 B-3 B-4 M R C
ReCMA w/ reasoning step n = 5

w/o vn and tn 0.662 0.516 0.407 0.324 0.241 0.527 0.911
w/o tn 0.662 0.517 0.410 0.327 0.230 0.525 0.923
w/o vn 0.664 0.519 0.409 0.330 0.233 0.527 0.930

w/ vn and tn 0.667 0.521 0.413 0.334 0.242 0.533 0.941

TABLE V
ABLATION STUDIES OF JOINT ATTENDED FEATURES
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B-1 B-2 B-3 B-4 M R C Human
AVSD-baseline [16] 0.614 0.467 0.365 0.289 0.210 0.480 0.651 2.885

ReCMA(n = 5) 0.645 0.504 0.402 0.324 0.232 0.521 0.875 3.123

TABLE VI
RELEASED BY THE AVSD ORGANIZERS, THE FINAL RESULT OF

OBJECTIVE EVALUATION AND HUMAN RATING ON DSTC8-AVSD TEST
SET.

our best performance (ReCMA with joint attended features
at reasoning step n= 5) improve relative 20.8% improvement
over baseline on CIDEr metric.

F. Qualitative analysis

Table VI shows the evaluation result on DSTC8-AVSD
test set. The result was released by AVSD organizers. Both
automatic evaluation metrics and human rating of proposed
ReCMA outperforms baseline. Figure 5 shows the ground
truth proposed by DSTC7 dataset and the answers generated
by AVSD-baseline model and proposed ReCMA model. The
answers generated by proposed ReCMA model illustrate that
multiple reasoning steps benefit the inference process and
hence lead to accurate answers of questions. For example,
the proposed model can focus on the people in the frame
and correctly answer the number and gender of people in the
dynamic scenes video. Compared with “the same position”
generated by the baseline model, the question “does she goes
out of washroom ?” is provided with a more precise answer
“in the bathroom” by the proposed model. Moreover, baseline
model cannot capture instant event in the video, but our model
can focus on instant emotion of people. When the question ask
temporal-related issue, like “ was he present at the beginning
?” or “ the video ends with him sitting in a chair watching tb
right ?”, proposed ReCMA model can also answer precisely
compared with baseline model. Figure 6 shows and example
of proposed ReCMA with different reasoning step. Though
the answer generated by ReCMA with lower reasoning step
(e.g, n = 2 or 3) correctly answer the question, the answer
generated by ReCMA with higher reasoning step (e.g, n = 4
and 5) specifically answer “sitting on the chair”.

In order to fully comprehend video dialogue task, we did
some analysis on DSTC dataset. Though DSTC7 dataset is
promising and challenging, the quality of the dataset need to
be improved. Some questions are challenging to answer and
the ground truth answer provides an ambiguous answer. For
example, a question “is he at work ?” is answered with “hard
to say, he is sitting in the hallway by himself ”. Moreover, lot
of to-be-answered questions in the training data ask additional
information, such as “anything else that i need to know ?” is
answered with “no, that is all that happens”. Furthermore, the
reference sometimes gives the answer outside the question.
For instance, the question is “is the man sitting on a chair ?”,
and proposed ReCMA answer “yes, the man is sitting on a
chair”. However, the ground truth answer “yes, the man sits
on the couch staring at the tv for a long duration”, it not only
subjects to the word “sitting” of the question but also provides
more irrelevant information. If the dataset precise questions
and answers, the model can have clear a understanding of
the video. Therefore, we believe the quality of the dataset

Fig. 5. Some examples of the answers generated by proposed ReCMA (n =
5) and the reference answers given by DSTC7 dataset. For simplicity, only
parts of video caption and video summary are shown. The results show that
our ReCMA not only can comprehend in-frame events but also answer the
temporal questions.

Fig. 6. An example of the answers generated by proposed ReCMA with
different reasoning step. The results show that ReCMA with higher reasoning
step can provide more specific answer.

requires enhancement, but the effort of DSTC7 dataset can
not be discounted.

V. CONCLUSION

We presented an end-to-end video dialogue system to con-
verse about videos and understand dynamic scenes. We also
showed that proposed ReCMA, a recurrent cross-modality at-
tention, can take cross-modality information to enhance atten-
tion mechanism. Through multiple reasoning steps of ReCMA,
the model achieved a better comprehension of multimodal
context, thus boosting video question answering performance
over state-of-the-art baseline. We evaluated proposed ReCMA
on DSTC7 dataset, where ReCMA achieved a relative 20.8%
improvement over the baseline on CIDEr metric. In this paper,
we also demonstrated the effectiveness of attention mechanism
for video dialogue system and the usefulness of each modali-
ties on DSTC7 dataset. Video question answering is a new and
promising research area, and a possible improvement to our
work is adding pre-trained word embedding such as BERT to
improve the semantic understanding of the model.
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